
Malaysian Journal of Mathematical Sciences 19(1): 311–323 (2025)
https://doi.org/10.47836/mjms.19.1.16

Malaysian Journal of Mathematical Sciences

Journal homepage: https://mjms.upm.edu.my

Investigating the ARSIRI Model: An Extended SIR Model with Reinfection
for Modelling Addiction-Related Phenomena

N. Susyanto ID

Department of Mathematics, Universitas Gadjah Mada,
Yogyakarta, Indonesia

E-mail: nanang_susyanto@ugm.ac.id
∗Corresponding author

Received: 23 January 2024
Accepted: 4 November 2024

Abstract

This paper investigates the ARSIRI model, a modified SIR model that considers the possibility
of reinfection from the recovered compartment to the infected compartment. This modification
is motivated by representing an addiction-related phenomenon in which recovered individuals
can become reinfected. The paper examines disease-free and endemic equilibrium points. The
stability conditions of the equilibrium points are investigated using a reproductive number that
cannot be computed using the regular next-generationmatrix. Themost important parameter in
themodel, namely the reinfection rate, is then analyzed from a bifurcation point of view. Finally,
the ARSIRI model is applied to simulated data as well as real data related to alcohol addiction,
demonstrating its superiority over the regular SIR model.
Keywords: ARSIRI model; equilibrium points; reproductive number; bifurcation analysis; al-

cohol addiction model.
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1 Introduction

Mathematical modelling plays a vital role in addressing diverse real-world problems by pro-
viding critical insights and solutions. Researchers utilize mathematical principles to abstract com-
plex phenomena into models, enabling effective analysis, prediction, and decision-making. In
public health and epidemiology, as shown in [16, 7], modelling is employed to simulate dis-
ease spread, assess interventions, and inform policy formulation. Similarly, phenomena such as
predator-prey interactions can also be effectivelymodeledmathematically [8]. In another applica-
tion, mathematical models are used to elucidate how smoking behaviors propagate within a pop-
ulation [5]. Furthermore, mathematical approaches, such as those proposed in [15], contribute to
advancements in classification methods. An additional intriguing application is the modelling of
social dynamics, as highlighted in [4].

Among all the mentioned models, the Susceptible-Infected-Recovered (SIR) model is one of
the most common. This model is a well-established compartmental model used to understand
the spread of infectious diseases [6]. It divides a population into three compartments: susceptible
(S), infected (I), and recovered (R). Zhang et al. [22] consider an SIRmodel for modelling disease
spread constant infectious period. They provide conditions under which the disease dies out or
becomes endemic, giving insight into the long-term behavior of the disease.
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Figure 1: SIR Diagram Transfer

With β representing the infection rate and γ representing the recovery rate, and referring to the
transfer diagram shown in Figure 1, SIR model is expressed as a system of differential equations:

dS(t)

dt
= µ− βS(t)I(t)− µS(t), S(0) = S0 ≥ 0,

dI(t)

dt
= βS(t)I(t)− µI(t)− γI(t), I(0) = I0 ≥ 0,

dR(t)

dt
= γI(t)− µR(t), R(0) = R0 ≥ 0.

(1)

In this context, the proportions for the variables S, I, and R, are considered, with the constraint
that S + I + R = 1. This mathematical framework has found applications in various fields. For
instance, it has been adapted to model the propagation of computer viruses, as discussed in [20].
Additionally, the concept of the reproductive number, crucial to understanding the dynamics of
disease transmission and control strategies, is explored in [18]. Furthermore, researchers have
expanded the model by incorporating spatial diffusion to examine the influence of geographical
factors on disease spread, as demonstrated in [9]. Most recently, in the context of the COVID-19
pandemic, the SIR model has been used to estimate the prevalence of infection by combining it
with statistical methods, as detailed in [11].

One limitation of the SIR model is that once individuals have moved into the recovered class,
they cannot transition back to either the susceptible or infected class. This limitation means that it
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cannot be applicable in certain contexts. For instance, in cases of influenza and COVID-19, recov-
ered individuals can become susceptible again and subsequently become infected. This scenario
has been explored in the context of modelling influenza in a study by Coburn et al. [3] and mod-
elling COVID-19 in research conducted by Salman et al. [12], where both studies use a modified
SIR model known as the SIRS model.

In some cases, individuals who have already moved into the recovered class can transition di-
rectly back into the infected class, especially when modelling addiction-related phenomena. The
model is referred to as the ARSIRI (Addiction-Related SIRmodel). For example, due to the addic-
tive nature of nicotine, individuals who have quit smoking can relapse and become smokers again,
akin to being "reinfected". Here, the concept of "infection" refers to smoking behavior. The spread
of smoking behavior has been examined in previous studies [13, 21]. However, these studies do
not account for the possibility of reinfection. Another addiction-related phenomenon is alcohol
use disorders. Our ARSIRI model has the potential to model alcohol use and abuse in rural areas,
as highlighted in the study by Osgood and Chambers [10]. This represents the first contribution
of our current paper.

From a broader perspective, this paper investigates the ARSIRI model, illustrated in Figure 2.
This model serves as an extension of the existing SIR model, incorporating an additional reinfec-
tion parameter denoted as ω. The concept of modelling with reinfection was initially introduced
in [17], primarily to model herpes infections. Although stability criteria were provided, the stud-
ies in this direction lacked an analysis of reproductive numbers and bifurcations. Subsequently,
the SIRI model has been explored from various angles in other studies [14, 1]. However, despite
the stability and bifurcation analyzes in these papers, none of them thoroughly investigate the
reinfection parameter, which sets ARSIRI apart from the standard SIR model. Among all men-
tioned advantages, the proposed method should satisfy all assumptions like what the SIR model
does, such as homogeneous mixing of the infected and susceptible populations and a constant
total population over time.

The second major contribution of our current paper lies in conducting a comprehensive exam-
ination of the reinfection parameter. This involves assessing its impact on reproductive number
and stability, as well as providing a bifurcation analysis. Furthermore, consequences of neglect-
ing this reinfection parameter are explored, both through simulated data analysis and through
real data analysis. The real data used in our study pertain to alcohol use disorders taken from
Our World in Data. The remainder of the paper proceeds as follows. Section 2 presents the main
results, including the ARSIRI mathematical model, reproductive numbers, the existence of equi-
librium points, their stability, and an analysis of the effects of the reinfection parameter, including
bifurcation analysis. To illustrate the performance of the ARSIRI model compared to the standard
SIR model, both simulated and real datasets are utilized, considering the mean square errors of
both models. Finally, Section 4 draws some conclusions.
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Figure 2: SIRI Diagram Transfer

2 Main Results

With the reinfection parameter ω, our ARSIRI model is a system of differential equations,

dS(t)

dt
= µ− βS(t)I(t)− µS(t), S(0) = S0 ≥ 0,

dI(t)

dt
= βS(t)I(t) + ωR(t)− µI(t)− γI(t), I(0) = I0 ≥ 0,

dR(t)

dt
= γI(t)− ωR(t)− µR(t), R(0) = R0 ≥ 0,

(2)

with domainΩ = {(x, y, z) ∈ R
3 : x, y, z ≥ 0 and x+y+z = 1}. It is easy to see thatΩ is positively

invariant with respect system 2.

2.1 Reproductive number and stability of equilibrium points

The quantity threshold that can be used to determine whether infection can invade and persist
in a new host population is called the reproductive number. Using the next-generation method
(NGM) as provided in [19], the reproductive number of the model (1) can be easily obtained,
which is equal to RSIR

0 =
β

µ+ γ
. Unfortunately, this method cannot be used for ARSIRI because

the disease-free population is not invariant. Note that even though the population is free of dis-
ease, it is still possible for the population to get infection due to the reinfection rate ω. Therefore,
another approach is needed to find this reproductive number.

In order to obtain the reproductive number, the Jacobian matrix at the equilibrium points is
considered. Now, let us define,

R0 =
β(µ+ ω)

µ(µ+ ω + γ)
. (3)

Next, it will be proved that this R0 satisfies two natural properties of the reproductive number:

• if it is less than 1, then the disease must be dying out and,
• if it is greater than 1, then the disease persists in the population.
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The first property can be seen by the stability of the disease-free equilibrium point, whereas the
second one can be seen from the endemic equilibrium point. The results are provided in the
following theorems.
Theorem 2.1. If R0 < 1, the model (2) has a disease-free equilibrium point E0 = (1, 0, 0) that is locally
asymptotically stable.

Proof. It is clear that substituting E0 into system (2) results in dS

dt
= 0, dI

dt
= 0, and dI

dt
= 0. Note

that the Jacobian matrix at E0 is ,

Jf(E0) =

−µ −β 0
0 β − µ− γ ω
0 γ −µ− ω

 . (4)

The characteristic polynomial of Jf(E0), i.e.,
p0(λ) = det(λI − Jf(E0)) = (λ+ µ)((λ− β + µ+ γ)(λ+ µ+ ω)− ωγ), (5)

has roots λ1 = −µ < 0 and zeros of the quadratic polynomial,
(λ+ a)(λ+ b)− c = 0, (6)

with a = −β + µ+ γ, b = µ+ ω, and c = ωγ. To ensure that the roots of (6) have the negative real
part, it is sufficient to show that a+ b and ab− c are positive. These two conditions can be verified
by using the fact that R0 < 1 as follows,

a+ b = −β + µ+ γ + µ+ ω = −β +
β(µ+ ω)

µR0
+ µ > −β +

β(µ+ ω)

µ
+ µ > µ > 0,

and
ab− c = (−β + µ+ γ)(µ+ ω)− ωγ = −β(µ+ ω) + (µ+ γ)(µ+ ω)− ωγ,

= −R0µ(µ+ ω + γ) + µ2 + (ω + γ)µ > −µ(µ+ ω + γ) + µ2 + (ω + γ)µ = 0.

This proves that E0 is locally asymptotically stable, as required.

Next, the property related to the stability of the endemic equilibrium point is investigated.
Theorem 2.2. If R0 > 1, the model (2) has a unique endemic equilibrium point E+ = (S∗, I∗, R∗) that
is locally asymptotically stable where,

S∗ =
1

R0
, (7)

I∗ =
µ(R0 − 1)

β
, (8)

R∗ =
γµ(R0 − 1)

β(µ+ ω)
. (9)

Proof. By vanishing the right-hand side of each equation in (2),

0 = µ− βS∗I∗ − µS∗ ⇐⇒ S∗ =
µ

βI∗ + µ
, (10)

0 = βS∗I∗ − µI∗ − γI∗ + ωR∗, (11)

0 = γI∗ − ωR∗ − µR∗ ⇐⇒ R∗ =
γI∗

ω + µ
, (12)
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is obtained. Plugging (10) and (12) into (11) gives I∗ =
µ(R0 − 1)

β
and subsequently S∗ =

1

R0

andR∗ =
γµ(R0 − 1)

β(µ+ ω)
as claimed. Next, the stability ofE+ is investigated using a Jacobian matrix.

The Jacobian matrix at E+ is computed to be,

Jf(E+) =

−βI∗ − µ −βS∗ 0
βI∗ βS∗ − µ− γ ω
0 γ −ω − µ

 , (13)

that has characteristics equation,

(λ+ µ)(λ− (βS∗ − βI∗ − µ− γ))

(
λ+

−γ(ω − βI∗)

βS∗ − βI∗ − µ− γ
− (ω + µ)

)
= 0. (14)

Consequently, the eigen values of (13) are,

λ1 = −µ,

λ2 = βS∗ − βI∗ − µ− γ,

and

λ3 =
−γ(ω − βI∗)

βS∗ − βI∗ − µ− γ
− (ω + µ).

Since λ1 is clearly negative, only the need to show λ2, λ3 < 0. The eigen value λ2 can be written
as,

λ2 = − γω

µ+ ω
− µ(R0 − 1),

that is clearly negative for R0 > 1. The last eigen value λ3 can be written as,

λ3 =
µ(µ+ ω + γ)(R0 − 1)

λ2
,

that is also obviously negative for R0 > 1 since λ2 < 0.

2.2 The effects of reinfection parameter

The reinfection parameter ω plays a crucial role in the SIRI model by increasing the basic re-
productive number compared to the standard SIR model. This fact can be verified by the relation
between R0 and RSIR

0 , that is,

R0 =

(
1 +

γω

µ(µ+ ω + γ)

)
RSIR

0 . (15)

Consequently, it follows that if an SIR model possesses a reproductive number greater than one,
then its corresponding SIRI model (with identical parameters to the SIR model except for the
reinfection parameter) will also have a reproductive number greater than one.

Note that the reproductive number R0 is an increasing function of ω, cateris paribus. What
makes this intriguing is that while the SIR model may have a reproductive number less than one
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(indicating the disease dies out), the corresponding SIRI model can have a reproductive number
greater than one if the reinfection rate is sufficiently high, as illustrated in Figure 3. It becomes
evident that when starting with R0 < 1, there exists a specific value of ω such that R0 > 1. The
value of ω∗ at which R0 equals one serves as the bifurcation parameter.
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Figure 3: Comparison of reproductive numbers.

For each value of R0, the corresponding ω, as determined by (3), is given by the equation:

ω =
µ([µ+ γ]R0 − β)

β − µR0
. (16)

Consequently, the specific ω∗ corresponding to R0 = 1 is:

ω∗ =
µ(µ+ γ − β)

β − µ
. (17)

It is important to note that the graph of R0 as a function of ω intersects the line R0 = 1 only when
µ+γ > β. This condition implies that if β > µ and µ+γ > β, then the positive value for ω∗ exists,
leading to the emergence of a bifurcation as provided in the following theorem.
Theorem 2.3. If β > µ and µ+ γ > β, then the bifurcation of system (2) at ω = ω∗ is forward.

Proof. By employing the Castillo-Song bifurcation analysis [2], it is shown that the system (2)
exhibits a forward bifurcation when R0 = 1. Given that this value of R0 = 1 corresponds to
ω = ω∗ and considering that R0 strictly increases with ω, it can be concluded that system (2)
experiences a forward bifurcation at ω = ω∗. The graph illustrates that when ω < ω∗, there
exists a unique stable equilibrium point, namely, the disease-free state. Conversely, when ω > ω∗,
two equilibrium points emerge: one representing the unstable disease-free state and the other
representing the stable endemic equilibrium point.

An illustration of the forward bifurcation at ω = ω∗ is provided in Figure 4. The graph illus-
trates that when ω < ω∗, there exists a unique stable equilibrium point, namely, the disease-free
state. Conversely, when ω > ω∗, two equilibrium points emerge: one representing the unstable
disease-free state and the other representing the stable endemic equilibrium point.
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Figure 4: Bifurcation w.r.t. reinfection parameter.

3 Experimental Results

In this section, we apply the ARSIRI model to both simulated and real data on alcohol addic-
tion. Parameter estimation for the SIR and SIRI models is obtained via ordinary least squares.

3.1 Simulated data

In the first simulated dataset, parameters β = 0.12, γ = 0.1, µ = 0.05, and ω = 0.09 are se-
lected to simulate a scenario where R0 < 1. With initial values I(0) = 0.03 and R(0) = 0.05,
the values of I(1), I(2), . . . , I(15) are computed. The values of R(1), R(2), . . . , R(15) are not com-
puted since these values are typically not reported in reality. Based on the computed values of
I(1), I(2), . . . , I(15), the parameters β, γ, µ, ω, and the initial value R(0) are estimated using a
simple least squares method. Once the parameters are obtained, the mean square error (MSE)
between the simulated data and the values predicted by the model is calculated.

To facilitate a comparison with the regular SIR model, the simulated data is also fitted with
the standard SIR model and computed the MSE. The comparison between the ARSIRI and SIR
models in the first simulated dataset is presented in Figure 5. Visually, it is evident that the SIRI
model provides a much better fit compared to its counterpart, the SIR model. Numerically, the
mean square errors (MSE) for the SIRI and SIR models have been verified as 0.04% and 0.30%,
respectively.

This example illustrates that when the SIR model is applied to an SIRI case, the conclusion is
incorrect. Note that RSIR

0 = 0.8 < 1 while R0 = 1.4 > 1 so the SIR model will predict that the
"disease"will die out, but the SIRImodelwill indicate that the endemic equilibrium is stable. From
a bifurcation point of view, as provided by Theorem 2.3, the value of the reinfection parameter
ω = 0.05 is sufficient to change the stability of the endemic equilibrium point, since the critical
point for this reinfection parameter is ω∗ = 0.02142857.
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Figure 5: ARSIRI vs SIR in simulated data 1.

The second simulated dataset is designed to simulate a scenariowhereR0 > 1. The same initial
values and procedures are used as before, but parameters β = 3, γ = 2.9, µ = 0.0125, and ω = 0.8
are selected. The results are presented in the Figure 6, and the mean square errors (MSE) for the
SIRI and SIR models are 3.74 × 10−5 and 6.7 × 10−3 respectively. This indicates that the ARSIRI
model outperforms the SIR model.

Figure 6: ARSIRI vs SIR in simulated data 2.

With RSIR
0 = 1.030043 > 1, the value of the reinfection rate ω = 0.8will dramatically increase

R0 = 52.53, which is approximately 50 times the reproductive number under the SIR model.

3.2 Real data

TheARSIRImodel is applied to real data related to alcohol addiction, obtained fromOurWorld
in Data, specifically data on the current number of cases of alcohol use disorders per 100 people
aged 15-49 years.This age group is selected because they are still actively interacting with others,
making it relevant to the ARSIRI and SIR models.

The data spans from 1990 to 2019 for many countries, but The United Kingdom (UK) and
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the United States are specifically selected due to their low birth rates. However, to adhere to the
constant population condition required by our model, data only from 2013 to 2019 is used. Years
prior to 2013 are excluded to ensure that the total population difference from 2019 remains below
5%.

Using these seven values of I , representing people with alcohol problems from both countries,
the parameters β, γ, µ, ω, and the initial value R(0) are estimated for our ARSIRI model. The
parameters β, γ, µ, and ω are also estimated for the standard SIR model. Similar to the simulated
data analysis, the mean square errors (MSEs) for both models are then compared.

The results in terms of graphics can be seen in Figure 7 for the United States, where the mean
square error (MSE) for the ARSIRI model is 6.31 × 10−5, outperforming the SIR model with an
MSE of 9.24× 10−5.

Figure 7: ARSIRI vs SIR for USA data.

For the UK, the results are presented in Figure 8, showing anMSE of 1.15×10−4 for our ARSIRI
model and anMSE of 1.63×10−4 for the SIRmodel. It is evident that theARSIRImodel still slightly
outperforms the SIR model in terms of MSE.

Figure 8: ARSIRI vs SIR for UK data.

It can be observed from the two real datasets above that when the SIR model is employed
to model SIRI phenomena, the conclusions may be inaccurate, as depicted in Figures 7 and 8.
These disparities could arise from the omission of reinfection when utilizing the SIR model for
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modelling.

4 Conclusions

The ARSIRI model is explored, which represents addiction-related phenomena. After analyz-
ing the existence of equilibrium points and their stability, the reproductive number is calculated
using a straightforward Jacobian approach, even though it cannot be determined using the stan-
dard next-generation matrix approach. A simple analytical proof is also provided to justify the
occurrence of forward bifurcation related to the reinfection parameter and its connection to the
reproductive number. Using both simulated and real data, it is demonstrated that the ARSIRI
model outperforms the standard SIR model.

The next research may focus on systems where the population is not constant. Furthermore, a
stochastic version of the ARSIRI model might be of interest to consider, as it allows for different
effects of infection and reinfection rates on different individuals. Lastly, exploring and validat-
ing applications related to addiction phenomena with real data could also be fruitful avenues for
research.
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